

Year 11 Mathematics Specialist Test 6 2019

Calculator Free Proof by Induction and Complex Numbers

STUDENT'S NAMI	£		
DATE : Wednesday 25 th September		TIME: 50 minutes	MARKS : 46
INSTRUCTIONS: Standard Items:	Pens, pencils, drawin	ng templates, eraser	

1. (3 marks)

State the following recurring decimal as a fraction. It is not necessary to simplify the fraction.

1.2833333333...

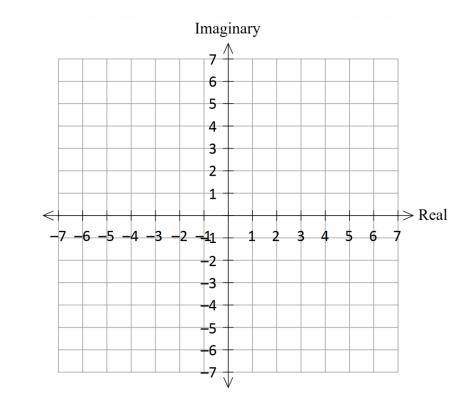
2. (2 marks)

For the complex number z = 3i - 2, state:

(a)
$$\operatorname{Re}(z)$$
 [1]

(b) \overline{z} [1]

3. (3 marks)


Determine the complex solutions to the equation $2x^2 - 4x + 7 = 0$ in their most simplified form.

4. (4 marks)

Plot the following complex numbers on the argand diagram below. Label all the points clearly.

(a)
$$z_1 = 2 + 4i$$
 (b) $z_2 = -3 + 2i$

(c)
$$z_3 = \overline{z_1}$$
 (d) $z_4 = iz_2$

5. (4 marks)

If 3 - 2i is a root of the quadratic equation $x^2 + bx + c = 0$, determine the values of b and c.

6. (7 marks)

If z = 2 - 5i and w = -3 + 2i, determine:

(a)
$$z - 2w$$
 [2]

(b) $\frac{w}{z}$

[3]

(c) $w\overline{w}$

[2]

7. (4 marks)

Determine a and b if $\frac{(1-3i)^2}{2-i} = a+bi$.

8. (6 marks)

Prove, by mathematical induction, that $4^n - 1$ is divisible by 3 for any positive integer n.

9. (6 marks)

Use mathematical induction to prove the following conjecture:

$$1 + x + x^{2} + x^{3} + ... + x^{n-1} = \frac{1 - x^{n}}{1 - x}, \quad n \ge 1, n \text{ a counting number.}$$

10. (6 marks)

Use mathematical induction to prove the following conjecture:

$$\frac{1}{1(3)} + \frac{1}{2(4)} + \frac{1}{3(5)} + \dots + \frac{1}{n(n+2)} = \frac{3}{4} - \frac{2n+3}{2(n+1)(n+2)}, \quad n \ge 1, n \text{ a counting number.}$$